metabelian, supersoluble, monomial, A-group
Aliases: C72⋊2C3, C7⋊1(C7⋊C3), SmallGroup(147,4)
Series: Derived ►Chief ►Lower central ►Upper central
C72 — C72⋊C3 |
Generators and relations for C72⋊C3
G = < a,b,c | a7=b7=c3=1, ab=ba, cac-1=a4, cbc-1=b4 >
Character table of C72⋊C3
class | 1 | 3A | 3B | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 7J | 7K | 7L | 7M | 7N | 7O | 7P | |
size | 1 | 49 | 49 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 3 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ5 | 3 | 0 | 0 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ6 | 3 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ7 | 3 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ8 | 3 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ9 | 3 | 0 | 0 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ10 | 3 | 0 | 0 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ11 | 3 | 0 | 0 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | 3 | complex lifted from C7⋊C3 |
ρ12 | 3 | 0 | 0 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ13 | 3 | 0 | 0 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ14 | 3 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ15 | 3 | 0 | 0 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ16 | 3 | 0 | 0 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ17 | 3 | 0 | 0 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ18 | 3 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ19 | 3 | 0 | 0 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | 3 | complex lifted from C7⋊C3 |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)
(1 49 27 34 41 13 20)(2 43 28 35 42 14 21)(3 44 22 29 36 8 15)(4 45 23 30 37 9 16)(5 46 24 31 38 10 17)(6 47 25 32 39 11 18)(7 48 26 33 40 12 19)
(2 3 5)(4 7 6)(8 31 21)(9 33 18)(10 35 15)(11 30 19)(12 32 16)(13 34 20)(14 29 17)(22 38 43)(23 40 47)(24 42 44)(25 37 48)(26 39 45)(27 41 49)(28 36 46)
G:=sub<Sym(49)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49), (1,49,27,34,41,13,20)(2,43,28,35,42,14,21)(3,44,22,29,36,8,15)(4,45,23,30,37,9,16)(5,46,24,31,38,10,17)(6,47,25,32,39,11,18)(7,48,26,33,40,12,19), (2,3,5)(4,7,6)(8,31,21)(9,33,18)(10,35,15)(11,30,19)(12,32,16)(13,34,20)(14,29,17)(22,38,43)(23,40,47)(24,42,44)(25,37,48)(26,39,45)(27,41,49)(28,36,46)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49), (1,49,27,34,41,13,20)(2,43,28,35,42,14,21)(3,44,22,29,36,8,15)(4,45,23,30,37,9,16)(5,46,24,31,38,10,17)(6,47,25,32,39,11,18)(7,48,26,33,40,12,19), (2,3,5)(4,7,6)(8,31,21)(9,33,18)(10,35,15)(11,30,19)(12,32,16)(13,34,20)(14,29,17)(22,38,43)(23,40,47)(24,42,44)(25,37,48)(26,39,45)(27,41,49)(28,36,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49)], [(1,49,27,34,41,13,20),(2,43,28,35,42,14,21),(3,44,22,29,36,8,15),(4,45,23,30,37,9,16),(5,46,24,31,38,10,17),(6,47,25,32,39,11,18),(7,48,26,33,40,12,19)], [(2,3,5),(4,7,6),(8,31,21),(9,33,18),(10,35,15),(11,30,19),(12,32,16),(13,34,20),(14,29,17),(22,38,43),(23,40,47),(24,42,44),(25,37,48),(26,39,45),(27,41,49),(28,36,46)]])
C72⋊C3 is a maximal subgroup of
C7⋊4F7 C7⋊F7 C7⋊C32
C72⋊C3 is a maximal quotient of C72⋊C9
Matrix representation of C72⋊C3 ►in GL6(𝔽43)
7 | 37 | 0 | 0 | 0 | 0 |
9 | 36 | 1 | 0 | 0 | 0 |
37 | 24 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 25 | 24 |
0 | 0 | 0 | 24 | 42 | 42 |
0 | 0 | 0 | 42 | 42 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 25 | 24 |
1 | 0 | 0 | 0 | 0 | 0 |
20 | 42 | 42 | 0 | 0 | 0 |
41 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 24 | 42 | 42 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(43))| [7,9,37,0,0,0,37,36,24,0,0,0,0,1,18,0,0,0,0,0,0,1,24,42,0,0,0,25,42,42,0,0,0,24,42,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,25,0,0,0,0,1,24],[1,20,41,0,0,0,0,42,1,0,0,0,0,42,0,0,0,0,0,0,0,1,24,0,0,0,0,0,42,1,0,0,0,0,42,0] >;
C72⋊C3 in GAP, Magma, Sage, TeX
C_7^2\rtimes C_3
% in TeX
G:=Group("C7^2:C3");
// GroupNames label
G:=SmallGroup(147,4);
// by ID
G=gap.SmallGroup(147,4);
# by ID
G:=PCGroup([3,-3,-7,-7,37,380]);
// Polycyclic
G:=Group<a,b,c|a^7=b^7=c^3=1,a*b=b*a,c*a*c^-1=a^4,c*b*c^-1=b^4>;
// generators/relations
Export
Subgroup lattice of C72⋊C3 in TeX
Character table of C72⋊C3 in TeX